Sunday, 1 June 2014

`int_0^1 cos(pit/2) dt` Evaluate the definite integral.

Given: `int_0^1cos(pit/2)dt`


Integrate using the u-substitution method.


Let `u=pi/2t`


`(du)/dt=pi/2`


`dt=2/pi*du`



`=int_0^1cos(u)*2/pidu`


`=2/piint_0^1cos(u)du`


`=2/pisin(u)`  Evaluated from t=0 to t=1.


`=2/pisin(pi/2t)`  Evaluated from t=0 to t=1.


`=2/pi[sin(pi/2)*1-sin(pi/2)*0]`


`=2/pi[sin(pi/2)-sin0]`


`=2/pi[1-0]`


`=2/pi`


`=.637`


Given: `int_0^1cos(pit/2)dt`


Integrate using the u-substitution method.


Let `u=pi/2t`


`(du)/dt=pi/2`


`dt=2/pi*du`



`=int_0^1cos(u)*2/pidu`


`=2/piint_0^1cos(u)du`


`=2/pisin(u)`  Evaluated from t=0 to t=1.


`=2/pisin(pi/2t)`  Evaluated from t=0 to t=1.


`=2/pi[sin(pi/2)*1-sin(pi/2)*0]`


`=2/pi[sin(pi/2)-sin0]`


`=2/pi[1-0]`


`=2/pi`


`=.637`


No comments:

Post a Comment

Is there any personification in "The Tell-Tale Heart"?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...