Given: `int_0^1cos(pit/2)dt`
Integrate using the u-substitution method.
Let `u=pi/2t`
`(du)/dt=pi/2`
`dt=2/pi*du`
`=int_0^1cos(u)*2/pidu`
`=2/piint_0^1cos(u)du`
`=2/pisin(u)` Evaluated from t=0 to t=1.
`=2/pisin(pi/2t)` Evaluated from t=0 to t=1.
`=2/pi[sin(pi/2)*1-sin(pi/2)*0]`
`=2/pi[sin(pi/2)-sin0]`
`=2/pi[1-0]`
`=2/pi`
`=.637`
Given: `int_0^1cos(pit/2)dt`
Integrate using the u-substitution method.
Let `u=pi/2t`
`(du)/dt=pi/2`
`dt=2/pi*du`
`=int_0^1cos(u)*2/pidu`
`=2/piint_0^1cos(u)du`
`=2/pisin(u)` Evaluated from t=0 to t=1.
`=2/pisin(pi/2t)` Evaluated from t=0 to t=1.
`=2/pi[sin(pi/2)*1-sin(pi/2)*0]`
`=2/pi[sin(pi/2)-sin0]`
`=2/pi[1-0]`
`=2/pi`
`=.637`
No comments:
Post a Comment