Tuesday, 24 February 2015

`cos(x + pi/4) - cos(x - pi/4) = 1` Find all solutions of the equation in the interval [0, 2pi).

`cos(x+pi/4)-cos(x-pi/4)=1 , 0<=x<=2pi`


We will use the following identity,


`cos(A+B)=cosAcosB-sinAsinB`


`cos(x+pi/4)-cos(x-pi/4)=1`


`rArr (cos(pi/4)cos(x)-sin(pi/4)sin(x))-(cos(pi/4)cos(x)+sin(pi/4)sin(x))=1`


`rArr(cos(x)-sin(x))/sqrt(2)-(cos(x)+sin(x))/sqrt(2)=1`


`rArr(cos(x)-sin(x)-cos(x)-sin(x))/sqrt(2)=1`


`rArr(-2sin(x))/sqrt(2)=1`


`rArrsin(x)=-1/sqrt(2)`


General solutions are ,


`x=(5pi)/4+2pin , x=(7pi)/4+2pin`


solutions for the range `0<=x<=2pi`  are,


`x=(5pi)/4 , x=(7pi)/4`


`cos(x+pi/4)-cos(x-pi/4)=1 , 0<=x<=2pi`


We will use the following identity,


`cos(A+B)=cosAcosB-sinAsinB`


`cos(x+pi/4)-cos(x-pi/4)=1`


`rArr (cos(pi/4)cos(x)-sin(pi/4)sin(x))-(cos(pi/4)cos(x)+sin(pi/4)sin(x))=1`


`rArr(cos(x)-sin(x))/sqrt(2)-(cos(x)+sin(x))/sqrt(2)=1`


`rArr(cos(x)-sin(x)-cos(x)-sin(x))/sqrt(2)=1`


`rArr(-2sin(x))/sqrt(2)=1`


`rArrsin(x)=-1/sqrt(2)`


General solutions are ,


`x=(5pi)/4+2pin , x=(7pi)/4+2pin`


solutions for the range `0<=x<=2pi`  are,


`x=(5pi)/4 , x=(7pi)/4`


No comments:

Post a Comment

Is there any personification in &quot;The Tell-Tale Heart&quot;?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...