You need to evaluate the projection of vector u onto vector v using the formula, such that:
`proj_v (u) = ((u*v)/(|v|^2))*v`
You need to evaluate the product of vectors `u = u_x*i + u_y*j` and `v = v_x*i + v_y*j` , such that:
`u*v = u_x* v_x + u_y* v_y`
`u*v = 4* 1+ 2* (-2)`
`u*v = 4 - 4`
`u*v = 0`
`proj_v (u) = (0/(|v|^2))*v => proj_v (u) = 0*v => proj_v...
You need to evaluate the projection of vector u onto vector v using the formula, such that:
`proj_v (u) = ((u*v)/(|v|^2))*v`
You need to evaluate the product of vectors `u = u_x*i + u_y*j` and `v = v_x*i + v_y*j` , such that:
`u*v = u_x* v_x + u_y* v_y`
`u*v = 4* 1+ 2* (-2)`
`u*v = 4 - 4`
`u*v = 0`
`proj_v (u) = (0/(|v|^2))*v => proj_v (u) = 0*v => proj_v (u) = 0*<1,-2>`
`proj_v (u) = <0*1,0*(-2)> => proj_v (u) = <0,0>`
Hence, evaluating the projection of vector u onto vector v yields `proj_v (u) = <0,0>.`
No comments:
Post a Comment