You need to use the following substitution `1 - u^2 = t` , such that:
`1 - u^2 = t=> -2udu = dt=>u du = -(dt)/2`
`int u*sqrt(1 - u^2) du = -(1/2)*int sqrt t dt`
`-(1/2)*int sqrt t dt = (-1/2)*(t^(3/2))/(3/2) + c`
Replacing back `1 - u^2` for t yields:
`int u*sqrt(1 - u^2) du = (-1/3)*((1 - u^2)^(3/2)) + c`
Hence, evaluating the indefinite integral, yields` int u*sqrt(1 - u^2) du = -((1...
You need to use the following substitution `1 - u^2 = t` , such that:
`1 - u^2 = t=> -2udu = dt=>u du = -(dt)/2`
`int u*sqrt(1 - u^2) du = -(1/2)*int sqrt t dt`
`-(1/2)*int sqrt t dt = (-1/2)*(t^(3/2))/(3/2) + c`
Replacing back `1 - u^2` for t yields:
`int u*sqrt(1 - u^2) du = (-1/3)*((1 - u^2)^(3/2)) + c`
Hence, evaluating the indefinite integral, yields` int u*sqrt(1 - u^2) du = -((1 - u^2)^(3/2))/3 + c`
No comments:
Post a Comment