The sine law indicates that in a triangle;
`(sinA)/a =(sinB)/b =(sinC)/c`
a,b,c are the lengths of the triangle and A,B,C are the opposite angles as shown in image.
`(sinA)/a =(sinB)/b`
`sin36/8 = sinB/5`
`B = sin^(-1)(sin36xx5/8) = 21.55^0`
Angle C `= 180-21.55-36 = 122.45^0`
`(sinB)/b =(sinC)/c`
`c = (sin122.45xx5)/sin21.55 = 11.49`
So the answers are;
Angle B = 21.55 deg
Angle C = 122.45 deg
Length c = 11.49 units
...
The sine law indicates that in a triangle;
`(sinA)/a =(sinB)/b =(sinC)/c`
a,b,c are the lengths of the triangle and A,B,C are the opposite angles as shown in image.
`(sinA)/a =(sinB)/b`
`sin36/8 = sinB/5`
`B = sin^(-1)(sin36xx5/8) = 21.55^0`
Angle C `= 180-21.55-36 = 122.45^0`
`(sinB)/b =(sinC)/c`
`c = (sin122.45xx5)/sin21.55 = 11.49`
So the answers are;
Angle B = 21.55 deg
Angle C = 122.45 deg
Length c = 11.49 units
No comments:
Post a Comment