Given: `1-sqrt(3)i`
`r=sqrt(1^2+(-sqrt(3))^2)=sqrt(1+3)=sqrt(4)=2`
`tantheta=-sqrt3/1=-sqrt3`
Since the angle is in quadrant 4,`<br> `
`theta=arctan(-sqrt(3))=(5pi)/3`
In trigonometric form `z=2[cos((5pi)/3)+isin((5pi)/3)]`
Given: `1-sqrt(3)i`
`r=sqrt(1^2+(-sqrt(3))^2)=sqrt(1+3)=sqrt(4)=2`
`tantheta=-sqrt3/1=-sqrt3`
Since the angle is in quadrant 4,`<br> `
`theta=arctan(-sqrt(3))=(5pi)/3`
In trigonometric form `z=2[cos((5pi)/3)+isin((5pi)/3)]`
No comments:
Post a Comment