Wednesday, 18 November 2015

`cos((5pi)/4 - x) = -sqrt(2)/2 (cos(x) + sin(x))` Prove the identity.

Prove the identity `cos((5pi)/4+x)=-sqrt2/2(cos(x)+sin(x))`


Use the formula `cos(u)cos(v)+sin(u)sin(v)`    


on the left side of the equation.


`cos((5pi)/4+x)`


`=cos((5pi)/4)cos(x)+sin((5pi)/4)sin(x)`


`=(-sqrt2/2)cos(x)+(-sqrt2/2)sin(x)`


`=-sqrt2/2(cos(x)+sin(x))`



Prove the identity `cos((5pi)/4+x)=-sqrt2/2(cos(x)+sin(x))`


Use the formula `cos(u)cos(v)+sin(u)sin(v)`    


on the left side of the equation.


`cos((5pi)/4+x)`


`=cos((5pi)/4)cos(x)+sin((5pi)/4)sin(x)`


`=(-sqrt2/2)cos(x)+(-sqrt2/2)sin(x)`


`=-sqrt2/2(cos(x)+sin(x))`



No comments:

Post a Comment

Is there any personification in "The Tell-Tale Heart"?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...