You need to evaluate the expression using the formula `cos a*cos b - sin a*sin b = cos (a + b)` . You need to put `a = pi/16` and `b = (3pi)/16,` such that:
`cos (pi/16)*cos ((3pi)/16) - sin (pi/16) *sin ((3pi)/16) = cos (pi/16 + (3pi)/16)`
`cos (pi/16)*cos ((3pi)/16) - sin (pi/16) *sin ((3pi)/16) = cos ((4pi)/16)`
`cos (pi/16)*cos ((3pi)/16) - sin (pi/16) *sin ((3pi)/16) = cos (pi/4) = sqrt2/2`
Hence, evaluating the...
You need to evaluate the expression using the formula `cos a*cos b - sin a*sin b = cos (a + b)` . You need to put `a = pi/16` and `b = (3pi)/16,` such that:
`cos (pi/16)*cos ((3pi)/16) - sin (pi/16) *sin ((3pi)/16) = cos (pi/16 + (3pi)/16)`
`cos (pi/16)*cos ((3pi)/16) - sin (pi/16) *sin ((3pi)/16) = cos ((4pi)/16)`
`cos (pi/16)*cos ((3pi)/16) - sin (pi/16) *sin ((3pi)/16) = cos (pi/4) = sqrt2/2`
Hence, evaluating the given expression yields that it is the cosine of the sum of the angles `a = pi/16` and `b = (3pi)/16` , such that `cos (pi/16)*cos ((3pi)/16) - sin (pi/16) *sin ((3pi)/16) = cos (pi/4) = sqrt2/2.`
No comments:
Post a Comment