Wednesday, 3 August 2016

`(3 - 2i)^5` Use DeMoivre's Theorem to find the indicated power of the complex number. Write the result in standard form.

`z=(3-2i)^5`


`r=sqrt[(3)^2+(-2)^2]=sqrt[9+4]=sqrt13`


`theta=arctan(-2/3)=-.5880`


DeMoivre's Theorem


`z^n=[r(costheta+isintheta)]^n=r^n[cosntheta+isinntheta]`


`z^5=[sqrt13(cos(-.5880)+isin(-.5880))]^5`


`z^5=(sqrt13)^5[cos5(-.5880)+isin5(-.5880)]`


`z^5=169sqrt13[cos(-2.94)+isin(-2.94)]`


`z^5=-597.00-122.00i`


`z=(3-2i)^5`


`r=sqrt[(3)^2+(-2)^2]=sqrt[9+4]=sqrt13`


`theta=arctan(-2/3)=-.5880`


DeMoivre's Theorem


`z^n=[r(costheta+isintheta)]^n=r^n[cosntheta+isinntheta]`


`z^5=[sqrt13(cos(-.5880)+isin(-.5880))]^5`


`z^5=(sqrt13)^5[cos5(-.5880)+isin5(-.5880)]`


`z^5=169sqrt13[cos(-2.94)+isin(-2.94)]`


`z^5=-597.00-122.00i`


No comments:

Post a Comment

Is there any personification in "The Tell-Tale Heart"?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...