`y=4x-x^2, y=3`
The point of intersection of the curves will be ,
`4x-x^2=3`
`4x-x^2-3=0`
`-x^2+4x-3=0`
`-(x^2-4x+3)=0`
`x^2-4x+3=0`
factorizing the above equation,
`(x-3)(x-1)=0`
x=3 , x=1
The shell has radius (x-1) , circumference `2pi(x-1)` and height `(4x-x^2)-3`
Volume generated by rotating the region bounded by the given curves about x=1 (V)=`int_1^3(2pi)(x-1)(4x-x^2-3)dx`
`V=int_1^3(2pi)(4x^2-x^3-3x-4x+x^2+3)dx`
`V=(2pi)int_1^3(-x^3+5x^2-7x+3)dx`
`V=2pi[-x^4/4+5x^3/3-7x^2/2+3x]_1^3`
`V=2pi[-3^4/4+5/3*3^3-7/2*3^2+3*3]-2pi[-1^4/4+5/3*1^3-7/2*1^2+3*1]`
`V=2pi((-81/4+45-63/2+9)-(-1/4+5/3-7/2+3))`
`V=2pi(9/4-11/12)`
`V=2pi(16/12)`
`V=(8pi)/3`
`y=4x-x^2, y=3`
The point of intersection of the curves will be ,
`4x-x^2=3`
`4x-x^2-3=0`
`-x^2+4x-3=0`
`-(x^2-4x+3)=0`
`x^2-4x+3=0`
factorizing the above equation,
`(x-3)(x-1)=0`
x=3 , x=1
The shell has radius (x-1) , circumference `2pi(x-1)` and height `(4x-x^2)-3`
Volume generated by rotating the region bounded by the given curves about x=1 (V)=`int_1^3(2pi)(x-1)(4x-x^2-3)dx`
`V=int_1^3(2pi)(4x^2-x^3-3x-4x+x^2+3)dx`
`V=(2pi)int_1^3(-x^3+5x^2-7x+3)dx`
`V=2pi[-x^4/4+5x^3/3-7x^2/2+3x]_1^3`
`V=2pi[-3^4/4+5/3*3^3-7/2*3^2+3*3]-2pi[-1^4/4+5/3*1^3-7/2*1^2+3*1]`
`V=2pi((-81/4+45-63/2+9)-(-1/4+5/3-7/2+3))`
`V=2pi(9/4-11/12)`
`V=2pi(16/12)`
`V=(8pi)/3`
No comments:
Post a Comment