`y=cos(x) , y=1-cos(x) ,0<=x<=pi`
Refer the attached image, y=cos(x) is plotted in red color and y=1-cos(x) is plotted in blue color.
From the graph,
cos(x) is above (1-cos(x)) from 0 to pi/3 and
(1-cos(x)) is above cos(x) from pi/3 to pi.
Area of the region enclosed by the given curves A=`int_0^(pi/3)(cos(x)-(1-cos(x)))dx+int_(pi/3)^pi((1-cos(x))-cos(x))dx`
`A=int_0^(pi/3)(2cos(x)-1)dx+int_(pi/3)^pi(1-2cos(x))dx`
`A=[2sin(x)-x]_0^(pi/3)+[x-2sin(x)]_(pi/3)^pi`
`A=((2sin(pi/3)-pi/3)-(2sin(0)-0))+(pi-2sin(pi)-(pi/3-2sin(pi/3))`
`A=(2*sqrt(3)/2-pi/3)+pi-pi/3+2*sqrt(3)/2`
`A=sqrt(3)-pi/3+pi-pi/3+sqrt(3)`
`A=pi/3+2sqrt(3)~~4.511`
`y=cos(x) , y=1-cos(x) ,0<=x<=pi`
Refer the attached image, y=cos(x) is plotted in red color and y=1-cos(x) is plotted in blue color.
From the graph,
cos(x) is above (1-cos(x)) from 0 to pi/3 and
(1-cos(x)) is above cos(x) from pi/3 to pi.
Area of the region enclosed by the given curves A=`int_0^(pi/3)(cos(x)-(1-cos(x)))dx+int_(pi/3)^pi((1-cos(x))-cos(x))dx`
`A=int_0^(pi/3)(2cos(x)-1)dx+int_(pi/3)^pi(1-2cos(x))dx`
`A=[2sin(x)-x]_0^(pi/3)+[x-2sin(x)]_(pi/3)^pi`
`A=((2sin(pi/3)-pi/3)-(2sin(0)-0))+(pi-2sin(pi)-(pi/3-2sin(pi/3))`
`A=(2*sqrt(3)/2-pi/3)+pi-pi/3+2*sqrt(3)/2`
`A=sqrt(3)-pi/3+pi-pi/3+sqrt(3)`
`A=pi/3+2sqrt(3)~~4.511`
No comments:
Post a Comment