Thursday, 13 November 2014

`int_0^1 (dx)/(1 + sqrt(x))^4` Evaluate the definite integral.


You need to solve the definite integral, using fundamental theorem of calculus, such that:


`int_a^b f(x) dx = F(b) - F(a)`


First, you need to solve the indefinite integral `int (dx)/((1+sqrt x)^4)` , using the substitution `1 + sqrt x = t` such that:


`1 + sqrt x = t => 1/(2sqrt x) dx = dt => dx = 2(t-1)dt`


`int (dx)/((1+sqrt x)^4) = int (2(t-1)dt)/(t^4)`


`int (2(t-1)dt)/(t^4) = int (2t)/(t^4)dt - int 2/(t^4)...


You need to solve the definite integral, using fundamental theorem of calculus, such that:


`int_a^b f(x) dx = F(b) - F(a)`


First, you need to solve the indefinite integral `int (dx)/((1+sqrt x)^4)` , using the substitution `1 + sqrt x = t` such that:


`1 + sqrt x = t => 1/(2sqrt x) dx = dt => dx = 2(t-1)dt`


`int (dx)/((1+sqrt x)^4) = int (2(t-1)dt)/(t^4)`


`int (2(t-1)dt)/(t^4) = int (2t)/(t^4)dt - int 2/(t^4) dt`


`int (2(t-1)dt)/(t^4) = int 2/(t^3)dt - int 2/(t^4) dt`


`int (2(t-1)dt)/(t^4) = int 2*(t^(-3))dt - int 2*(t^(-4)) dt`


`int (2(t-1)dt)/(t^4) = 2*(t^(-2))/(-2) - 2(t^(-3))/(-3) + c`


`int (2(t-1)dt)/(t^4) = -1/(t^2) + 2/(3t^3) + c`


Replacing back `1 + sqrt x` for t yields:


`int (dx)/((1+sqrt x)^4) = -1/((1 + sqrt x)^2) + 2/(3(1 + sqrt x)^3) + c`


Calculating the integral yields:


`int_0^1 (dx)/((1+sqrt x)^4) = (-1/((1 + sqrt x)^2) + 2/(3(1 + sqrt x)^3))|_0^1`


`int_0^1 (dx)/((1+sqrt x)^4) = (-1/((1 + 1)^2) + 2/(3(1 + 1)^3) + 1/((1 + 0)^2) - 2/(3(1 + 0)^3))`


`int_0^1 (dx)/((1+sqrt x)^4) = -1/4 + 1/12 + 1 - 2/3`


`int_0^1 (dx)/((1+sqrt x)^4) = (-3 + 1 + 12 - 8)/12`


`int_0^1 (dx)/((1+sqrt x)^4) = 2/12`


`int_0^1 (dx)/((1+sqrt x)^4) = 1/6`


Hence, evaluating the definite integral, using the fundamental theorem of calculus, yields `int_0^1 (dx)/((1+sqrt x)^4) = 1/6.`

No comments:

Post a Comment

Is there any personification in "The Tell-Tale Heart"?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...