Saturday, 20 June 2015

`sin(2x)sin(x) = cos(x)` Find the exact solutions of the equation in the interval [0, 2pi).

`sin(2x)sin(x)=cos(x) ,0<=x<=2pi`


`sin(2x)sin(x)-cos(x)=0`


`=2sin(x)cos(x)sin(x)-cos(x)=0`


`=cos(x)(2sin^2(x)-1)=0`


`=cos(x)(sqrt(2)sin(x)-1)(sqrt(2)sin(x)+1)=0`


solving each part separately,


`cos(x)=0 , (sqrt(2)sin(x)-1)=0 , (sqrt(2)sin(x)+1)=0`


General solutions for cos(x)=0 are,


`x=pi/2+2pin , x=(3pi)/2+2pin`


solutions for the range `0<=x<=2pi`  are,


`x=pi/2 , x=(3pi/2)`


`(sqrt(2)sin(x)-1)=0`


`sin(x)=1/sqrt(2)`


General solutions are,


`x=pi/4+2pin , x=(3pi)/4+2pin`


solutions for the range `0<=x<=2pi`  are,


`x=pi/4 , x=(3pi)/4`


`sqrt(2)sin(x)+1=0`


`sin(x)=-1/sqrt(2)`


General solutions are,


`x=(5pi)/4+2pin, x=(7pi)/4+2pin`


solutions for the range `0<=x<=2pi`  are,


`x=(5pi)/4 , x=(7pi)/4`


Combine all the solutions,


`x=pi/2 ,x=(3pi)/2 , x=pi/4 , x=(3pi)/4...

`sin(2x)sin(x)=cos(x) ,0<=x<=2pi`


`sin(2x)sin(x)-cos(x)=0`


`=2sin(x)cos(x)sin(x)-cos(x)=0`


`=cos(x)(2sin^2(x)-1)=0`


`=cos(x)(sqrt(2)sin(x)-1)(sqrt(2)sin(x)+1)=0`


solving each part separately,


`cos(x)=0 , (sqrt(2)sin(x)-1)=0 , (sqrt(2)sin(x)+1)=0`


General solutions for cos(x)=0 are,


`x=pi/2+2pin , x=(3pi)/2+2pin`


solutions for the range `0<=x<=2pi`  are,


`x=pi/2 , x=(3pi/2)`


`(sqrt(2)sin(x)-1)=0`


`sin(x)=1/sqrt(2)`


General solutions are,


`x=pi/4+2pin , x=(3pi)/4+2pin`


solutions for the range `0<=x<=2pi`  are,


`x=pi/4 , x=(3pi)/4`


`sqrt(2)sin(x)+1=0`


`sin(x)=-1/sqrt(2)`


General solutions are,


`x=(5pi)/4+2pin, x=(7pi)/4+2pin`


solutions for the range `0<=x<=2pi`  are,


`x=(5pi)/4 , x=(7pi)/4`


Combine all the solutions,


`x=pi/2 ,x=(3pi)/2 , x=pi/4 , x=(3pi)/4 , x=(5pi/4) , x=(7pi)/4`


No comments:

Post a Comment

Is there any personification in &quot;The Tell-Tale Heart&quot;?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...