Wednesday, 24 February 2016

`int_e^(e^4) (dx)/(xsqrt(ln(x)))` Evaluate the definite integral.

You need to use the following substitution  ln x=u, such that:


`ln x=u=>(dx)/x= du `


`int_e^(e^4) (dx)/(x*sqrt(ln x)) = int_(u_1)^(u_2) (du)/(sqrt u)`


`int_(u_1)^(u_2) (du)/(sqrt u) = 2sqrt u|_(u_1)^(u_2)`


Replacing back   ln x for u yields:


`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt (ln x)|_e^(e^4)`


Using Leibniz-Newton theorem yields:


`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt (ln e^4) - 2sqrt (ln e)`


`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt 4 - 2sqrt 1`


`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 4 - 2`


`int_e^(e^4) (dx)/(x*sqrt(ln...

You need to use the following substitution  ln x=u, such that:


`ln x=u=>(dx)/x= du `


`int_e^(e^4) (dx)/(x*sqrt(ln x)) = int_(u_1)^(u_2) (du)/(sqrt u)`


`int_(u_1)^(u_2) (du)/(sqrt u) = 2sqrt u|_(u_1)^(u_2)`


Replacing back   ln x for u yields:


`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt (ln x)|_e^(e^4)`


Using Leibniz-Newton theorem yields:


`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt (ln e^4) - 2sqrt (ln e)`


`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt 4 - 2sqrt 1`


`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 4 - 2`


`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2`


Hence, evaluating the definite integral, yields `int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2.`

No comments:

Post a Comment

Is there any personification in "The Tell-Tale Heart"?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...