You need to use the following substitution ln x=u, such that:
`ln x=u=>(dx)/x= du `
`int_e^(e^4) (dx)/(x*sqrt(ln x)) = int_(u_1)^(u_2) (du)/(sqrt u)`
`int_(u_1)^(u_2) (du)/(sqrt u) = 2sqrt u|_(u_1)^(u_2)`
Replacing back ln x for u yields:
`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt (ln x)|_e^(e^4)`
Using Leibniz-Newton theorem yields:
`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt (ln e^4) - 2sqrt (ln e)`
`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt 4 - 2sqrt 1`
`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 4 - 2`
`int_e^(e^4) (dx)/(x*sqrt(ln...
You need to use the following substitution ln x=u, such that:
`ln x=u=>(dx)/x= du `
`int_e^(e^4) (dx)/(x*sqrt(ln x)) = int_(u_1)^(u_2) (du)/(sqrt u)`
`int_(u_1)^(u_2) (du)/(sqrt u) = 2sqrt u|_(u_1)^(u_2)`
Replacing back ln x for u yields:
`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt (ln x)|_e^(e^4)`
Using Leibniz-Newton theorem yields:
`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt (ln e^4) - 2sqrt (ln e)`
`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt 4 - 2sqrt 1`
`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 4 - 2`
`int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2`
Hence, evaluating the definite integral, yields `int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2.`
No comments:
Post a Comment