You need to use the following substitution `cot x = t` , such that:
`cot x = t=>-csc^2 x dx = dt => csc^2 x dx = -dt`
`int sqrt(cot x)* csc^2 x dx = - int sqrt t dt`
`- int sqrt t dt = -(t^(3/2))/(3/2) + c`
Replacing back cot x for t yields:
`int sqrt(cot x)* csc^2 x dx = -(2/3)((cot x)^(3/2)) + c`
Hence, evaluating the indefinite integral, yields `int sqrt(cot...
You need to use the following substitution `cot x = t` , such that:
`cot x = t=>-csc^2 x dx = dt => csc^2 x dx = -dt`
`int sqrt(cot x)* csc^2 x dx = - int sqrt t dt`
`- int sqrt t dt = -(t^(3/2))/(3/2) + c`
Replacing back cot x for t yields:
`int sqrt(cot x)* csc^2 x dx = -(2/3)((cot x)^(3/2)) + c`
Hence, evaluating the indefinite integral, yields `int sqrt(cot x)* csc^2 x dx = -(2/3)((cot x)^(3/2)) + c`
No comments:
Post a Comment