Sunday, 29 May 2016

`sin(4x) = -2sin(2x)` Find the exact solutions of the equation in the interval `[0, 2pi).`

By a double angle formula `sin(4x)=2sin(2x)cos(2x).`


Therefore our equation may be rewritten as


`2sin(2x)cos(2x)+2sin(2x)=0,` or


`sin(2x)(cos(2x)+1)=0.`



So `sin(2x)=0` or `cos(2x)=-1.`


The general solutions are `2x=kpi,` or `x=(kpi)/2,`


and `2x=-pi/2+2kpi,` so `x=-pi/4+kpi,` where `k` is any integer.



The roots in the interval `[0, 2pi)` are


`x=0,` `x=pi/2,` `x=pi,` `x=(3pi)/2,` `x=(3pi)/4,` `x=(7pi)/4.`

By a double angle formula `sin(4x)=2sin(2x)cos(2x).`


Therefore our equation may be rewritten as


`2sin(2x)cos(2x)+2sin(2x)=0,` or


`sin(2x)(cos(2x)+1)=0.`



So `sin(2x)=0` or `cos(2x)=-1.`


The general solutions are `2x=kpi,` or `x=(kpi)/2,`


and `2x=-pi/2+2kpi,` so `x=-pi/4+kpi,` where `k` is any integer.



The roots in the interval `[0, 2pi)` are


`x=0,` `x=pi/2,` `x=pi,` `x=(3pi)/2,` `x=(3pi)/4,` `x=(7pi)/4.`

No comments:

Post a Comment

Is there any personification in "The Tell-Tale Heart"?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...