By a double angle formula `sin(4x)=2sin(2x)cos(2x).`
Therefore our equation may be rewritten as
`2sin(2x)cos(2x)+2sin(2x)=0,` or
`sin(2x)(cos(2x)+1)=0.`
So `sin(2x)=0` or `cos(2x)=-1.`
The general solutions are `2x=kpi,` or `x=(kpi)/2,`
and `2x=-pi/2+2kpi,` so `x=-pi/4+kpi,` where `k` is any integer.
The roots in the interval `[0, 2pi)` are
`x=0,` `x=pi/2,` `x=pi,` `x=(3pi)/2,` `x=(3pi)/4,` `x=(7pi)/4.`
By a double angle formula `sin(4x)=2sin(2x)cos(2x).`
Therefore our equation may be rewritten as
`2sin(2x)cos(2x)+2sin(2x)=0,` or
`sin(2x)(cos(2x)+1)=0.`
So `sin(2x)=0` or `cos(2x)=-1.`
The general solutions are `2x=kpi,` or `x=(kpi)/2,`
and `2x=-pi/2+2kpi,` so `x=-pi/4+kpi,` where `k` is any integer.
The roots in the interval `[0, 2pi)` are
`x=0,` `x=pi/2,` `x=pi,` `x=(3pi)/2,` `x=(3pi)/4,` `x=(7pi)/4.`
No comments:
Post a Comment