Given: `int_0^1(3t-1)^50dt`
Integrate using the Substitution Rule.
Let `u=3t-1`
`(du)/dt=3`
`dt=(du)/3`
`=int_0^1u^50*(du)/3`
`=1/3int_0^1u^50du`
`=1/3 *u^51/51` evaluated from t=0 to t=1
`=1/3*(3t-1)^51/51` evaluated from t=0 to t=1
`=1/3[(3*1-1)^51/51-(3*0-1)^51/51]`
`=1/3[2^51/51-((-1)^51)/51]`
`=1/3[[2^51+1^51]/51]`
`=(2^51+1)/153`
`=1.472xx10^13`
Given: `int_0^1(3t-1)^50dt`
Integrate using the Substitution Rule.
Let `u=3t-1`
`(du)/dt=3`
`dt=(du)/3`
`=int_0^1u^50*(du)/3`
`=1/3int_0^1u^50du`
`=1/3 *u^51/51` evaluated from t=0 to t=1
`=1/3*(3t-1)^51/51` evaluated from t=0 to t=1
`=1/3[(3*1-1)^51/51-(3*0-1)^51/51]`
`=1/3[2^51/51-((-1)^51)/51]`
`=1/3[[2^51+1^51]/51]`
`=(2^51+1)/153`
`=1.472xx10^13`
No comments:
Post a Comment