Thursday, 8 December 2016

`(-1 + i)^6` Use DeMoivre's Theorem to find the indicated power of the complex number. Write the result in standard form.

`(-1+i)^6`


De Moivre's Theorem is used to compute the powers and roots of a complex number. The formula is:


`[r(costheta + isintheta)]^n=r^n(cos(nxxtheta) + isin(n xx theta))`


To be able to apply it, convert the complex number z=-1+i to trigonometric form.Take note that that the trigonometric form of


`z=x+yi`


is


`z=r(costheta + isintheta)`


where


`r =sqrt(x^2+y^2)`    and    `theta=tan^(-1) y/x`


Applying these two formulas, the values of r and theta of z=-1+i are:


`r=sqrt((-1)^2+1^2)=sqrt2`


`theta...

`(-1+i)^6`


De Moivre's Theorem is used to compute the powers and roots of a complex number. The formula is:


`[r(costheta + isintheta)]^n=r^n(cos(nxxtheta) + isin(n xx theta))`


To be able to apply it, convert the complex number z=-1+i to trigonometric form.Take note that that the trigonometric form of


`z=x+yi`


is


`z=r(costheta + isintheta)`


where


`r =sqrt(x^2+y^2)`    and    `theta=tan^(-1) y/x`


Applying these two formulas, the values of r and theta of z=-1+i are:


`r=sqrt((-1)^2+1^2)=sqrt2`


`theta = tan^(-1) (1/(-1))=tan^(-1) (-1) = -45^o`


Since x is negative and y is positive, theta is located at the second quadrant. So the equivalent positive angle of theta is:


`theta =180^o +(-45^o)=135^o`


Then, plug-in the values of r and theta to the trigonometric form


`z=r(costheta + isintheta)`


`z=sqrt2(cos135^o +isin135^o)`


Now that z=-1+i is in trigonometric form, proceed to compute z^6 .


`z^6=(-1+i)^6`


     `=[sqrt2(cos135^o + isin135^o)]^6`


     `= (sqrt2)^6(cos(6xx135^o)+isin(6xx135^o)`


     `=8(cos810^o + isin810^o)`


     `=8(0 + 1i)`


     `=8i`



Therefore,  `(-1+i)^6=8i` .

No comments:

Post a Comment

Is there any personification in "The Tell-Tale Heart"?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...