`(-1+i)^6`
De Moivre's Theorem is used to compute the powers and roots of a complex number. The formula is:
`[r(costheta + isintheta)]^n=r^n(cos(nxxtheta) + isin(n xx theta))`
To be able to apply it, convert the complex number z=-1+i to trigonometric form.Take note that that the trigonometric form of
`z=x+yi`
is
`z=r(costheta + isintheta)`
where
`r =sqrt(x^2+y^2)` and `theta=tan^(-1) y/x`
Applying these two formulas, the values of r and theta of z=-1+i are:
`r=sqrt((-1)^2+1^2)=sqrt2`
`theta...
`(-1+i)^6`
De Moivre's Theorem is used to compute the powers and roots of a complex number. The formula is:
`[r(costheta + isintheta)]^n=r^n(cos(nxxtheta) + isin(n xx theta))`
To be able to apply it, convert the complex number z=-1+i to trigonometric form.Take note that that the trigonometric form of
`z=x+yi`
is
`z=r(costheta + isintheta)`
where
`r =sqrt(x^2+y^2)` and `theta=tan^(-1) y/x`
Applying these two formulas, the values of r and theta of z=-1+i are:
`r=sqrt((-1)^2+1^2)=sqrt2`
`theta = tan^(-1) (1/(-1))=tan^(-1) (-1) = -45^o`
Since x is negative and y is positive, theta is located at the second quadrant. So the equivalent positive angle of theta is:
`theta =180^o +(-45^o)=135^o`
Then, plug-in the values of r and theta to the trigonometric form
`z=r(costheta + isintheta)`
`z=sqrt2(cos135^o +isin135^o)`
Now that z=-1+i is in trigonometric form, proceed to compute z^6 .
`z^6=(-1+i)^6`
`=[sqrt2(cos135^o + isin135^o)]^6`
`= (sqrt2)^6(cos(6xx135^o)+isin(6xx135^o)`
`=8(cos810^o + isin810^o)`
`=8(0 + 1i)`
`=8i`
Therefore, `(-1+i)^6=8i` .
No comments:
Post a Comment