You need to find the values of the sine, cosine and tangent of `15^o, ` such that:
`sin 15^o = sin ((30^o)/2) = sqrt((1 - cos 30^o)/2)`
`sin 15^o = sqrt((2 - sqrt 3)/4)`
`sin 15^o = (sqrt(2 - sqrt 3))/2`
`cos 15^o = cos ((30^o)/2) = sqrt((1 + cos 30^o)/2)`
`cos 15^o = (sqrt(2 + sqrt 3))/2`
`tan 15^o = (sin 15^o )/(cos 15^o)`
`tan 15^o = ((sqrt(2 - sqrt 3))/2)/((sqrt(2 + sqrt 3))/2)`
...
You need to find the values of the sine, cosine and tangent of `15^o, ` such that:
`sin 15^o = sin ((30^o)/2) = sqrt((1 - cos 30^o)/2)`
`sin 15^o = sqrt((2 - sqrt 3)/4)`
`sin 15^o = (sqrt(2 - sqrt 3))/2`
`cos 15^o = cos ((30^o)/2) = sqrt((1 + cos 30^o)/2)`
`cos 15^o = (sqrt(2 + sqrt 3))/2`
`tan 15^o = (sin 15^o )/(cos 15^o)`
`tan 15^o = ((sqrt(2 - sqrt 3))/2)/((sqrt(2 + sqrt 3))/2)`
`tan 15^o = ((sqrt(2 - sqrt 3)))/((sqrt(2 + sqrt 3)))`
`tan 15^o = ((sqrt(4 - 3)))/(2 + sqrt 3)`
`tan 15^o = 1/(2 + sqrt 3)`
`tan 15^o = 1/(2 + sqrt 3)`
`tan 15^o = (2 - sqrt 3)/(4-3)`
`tan 15^o = (2 - sqrt 3)`
Hence, evaluating the values of sine, cosine and tangent of `15^o` , yields `sin 15^o = (sqrt(2 - sqrt 3))/2, cos 15^o = (sqrt(2 + sqrt 3))/2, tan 15^o = (2 - sqrt 3).`
No comments:
Post a Comment