Wednesday, 13 December 2017

`15^@` Find the exact values of the sine, cosine, and tangent of the angle.

You need to find the values of the sine, cosine and tangent of `15^o, ` such that:


`sin 15^o = sin ((30^o)/2) = sqrt((1 - cos 30^o)/2)`


`sin 15^o = sqrt((2 - sqrt 3)/4)`


`sin 15^o = (sqrt(2 - sqrt 3))/2`


`cos 15^o = cos ((30^o)/2) = sqrt((1 + cos 30^o)/2)`


`cos 15^o = (sqrt(2 + sqrt 3))/2`


`tan 15^o = (sin 15^o )/(cos 15^o)`


`tan 15^o = ((sqrt(2 - sqrt 3))/2)/((sqrt(2 + sqrt 3))/2)`


...

You need to find the values of the sine, cosine and tangent of `15^o, ` such that:


`sin 15^o = sin ((30^o)/2) = sqrt((1 - cos 30^o)/2)`


`sin 15^o = sqrt((2 - sqrt 3)/4)`


`sin 15^o = (sqrt(2 - sqrt 3))/2`


`cos 15^o = cos ((30^o)/2) = sqrt((1 + cos 30^o)/2)`


`cos 15^o = (sqrt(2 + sqrt 3))/2`


`tan 15^o = (sin 15^o )/(cos 15^o)`


`tan 15^o = ((sqrt(2 - sqrt 3))/2)/((sqrt(2 + sqrt 3))/2)`


`tan 15^o = ((sqrt(2 - sqrt 3)))/((sqrt(2 + sqrt 3)))`


`tan 15^o = ((sqrt(4 - 3)))/(2 + sqrt 3)`


`tan 15^o = 1/(2 + sqrt 3)`


`tan 15^o = 1/(2 + sqrt 3)`


`tan 15^o = (2 - sqrt 3)/(4-3)`


`tan 15^o = (2 - sqrt 3)`


Hence, evaluating the values of sine, cosine and tangent of `15^o` , yields `sin 15^o = (sqrt(2 - sqrt 3))/2, cos 15^o = (sqrt(2 + sqrt 3))/2, tan 15^o = (2 - sqrt 3).`

No comments:

Post a Comment

Is there any personification in "The Tell-Tale Heart"?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...