`sin(u-v)=sin(u)cos(v)-cos(u)sin(v)`
`sin(225-30)=sin(225)cos(30)-cos(225)sin(30)`
`sin(225-30)=(-sqrt2/2)(sqrt3/2)-(-sqrt2/2)(1/2)=-sqrt2/4(sqrt3-1)`
`cos(u-v)=cos(u)cos(v)+sin(u)sin(v)`
`cos(225-30)=cos(225)cos(30)+sin(225)sin(30)`
`cos(225-30)=(-sqrt2/2)(sqrt3/2)+(-sqrt2/2)(1/2)=-sqrt2/4(sqrt3+1)`
`tan(u-v)=(tan(u)-tan(v))/(1+tan(u)tan(v))`
`tan(225-30)=(tan(225)-tan(30))/(1+tan(225)tan(30))=(1-(sqrt3/3))/(1+(1)(sqrt3/3))=(3-sqrt3)/(3+sqrt3)`
The rationalized answer is `2-sqrt3.`
`sin(u-v)=sin(u)cos(v)-cos(u)sin(v)`
`sin(225-30)=sin(225)cos(30)-cos(225)sin(30)`
`sin(225-30)=(-sqrt2/2)(sqrt3/2)-(-sqrt2/2)(1/2)=-sqrt2/4(sqrt3-1)`
`cos(u-v)=cos(u)cos(v)+sin(u)sin(v)`
`cos(225-30)=cos(225)cos(30)+sin(225)sin(30)`
`cos(225-30)=(-sqrt2/2)(sqrt3/2)+(-sqrt2/2)(1/2)=-sqrt2/4(sqrt3+1)`
`tan(u-v)=(tan(u)-tan(v))/(1+tan(u)tan(v))`
`tan(225-30)=(tan(225)-tan(30))/(1+tan(225)tan(30))=(1-(sqrt3/3))/(1+(1)(sqrt3/3))=(3-sqrt3)/(3+sqrt3)`
The rationalized answer is `2-sqrt3.`
No comments:
Post a Comment