Friday, 20 September 2013

`(11pi)/12 = (3pi)/4 + pi/6` Find the exact values of the sine, cosine, and tangent of the angle.

`sin(u+v)=sin(u)cos(v)+cos(u)sin(v)`


`sin((3pi)/4+pi/6)=sin((3pi)/4)cos(pi/6)+cos((3pi)/4)sin(pi/6)`


`sin((3pi)/4+pi/6)=(sqrt2/2)(sqrt3/2)+(-sqrt2/2)(1/2)=(sqrt2/4)(sqrt3-1)`



`cos(u+v)=cos(u)cos(v)-sin(u)sin(v)`


`cos((3pi)/4+pi/6)=cos((3pi)/4)cos(pi/6)-sin((3pi)/4)sin(pi/6)`


`cos((3pi)/4+pi/6)=(-sqrt2/2)(sqrt3/2)-(sqrt2/2)(1/2)=(-sqrt2/4)(sqrt3+1)`



`tan(u+v)=(tan(u)+tan(v))/(1-tan(u)tan(v))`


`tan((3pi)/4+pi/6)=(tan((3pi)/4)+tan(pi/6))/(1-tan((3pi)/4)tan(pi/6))=(-1+(sqrt3/3))/(1-(-1)(sqrt3/3))=(-3+sqrt3)/(3+sqrt3)`


The rationalized answer is `-2+sqrt3.`



`sin(u+v)=sin(u)cos(v)+cos(u)sin(v)`


`sin((3pi)/4+pi/6)=sin((3pi)/4)cos(pi/6)+cos((3pi)/4)sin(pi/6)`


`sin((3pi)/4+pi/6)=(sqrt2/2)(sqrt3/2)+(-sqrt2/2)(1/2)=(sqrt2/4)(sqrt3-1)`



`cos(u+v)=cos(u)cos(v)-sin(u)sin(v)`


`cos((3pi)/4+pi/6)=cos((3pi)/4)cos(pi/6)-sin((3pi)/4)sin(pi/6)`


`cos((3pi)/4+pi/6)=(-sqrt2/2)(sqrt3/2)-(sqrt2/2)(1/2)=(-sqrt2/4)(sqrt3+1)`



`tan(u+v)=(tan(u)+tan(v))/(1-tan(u)tan(v))`


`tan((3pi)/4+pi/6)=(tan((3pi)/4)+tan(pi/6))/(1-tan((3pi)/4)tan(pi/6))=(-1+(sqrt3/3))/(1-(-1)(sqrt3/3))=(-3+sqrt3)/(3+sqrt3)`


The rationalized answer is `-2+sqrt3.`



No comments:

Post a Comment

Is there any personification in "The Tell-Tale Heart"?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...