Friday, 27 September 2013

`int_0^(pi/2)(|sin(x) - cos(2x)|)dx` Evaluate the integral and interpret it as the area of a region. Sketch the region.

`int_0^(pi/2)` (|sin(x)-cos(2x)|)dx


Since `sin(x)-cos(2x)<=0,[0,pi/6]`


and `sin(x)-cos(2x)>=0,[pi/6,pi/2]`


So, the integral can be split as,


`=int_0^(pi/6)(-(sin(x)-cos(2x)))dx+int_(pi/6)^(pi/2)(sin(x)-cos(2x))dx`


`=int_0^(pi/6)(cos(2x)-sin(x))dx+int_(pi/6)^(pi/2)(sin(x)-cos(2x))dx`


`=[1/2sin(2x)+cos(x)]_0^(pi/6)+[-cos(x)-1/2sin(2x)]_(pi/6)^(pi/2)`


`=(1/2sin(pi/3)+cos(pi/6)-(1/2sin(0)+cos(0))+(-cos(pi/2)-1/2sin(pi))-(-cos(pi/6)-1/2sin(pi/3))`


`=(1/2*sqrt(3)/2+sqrt(3)/2)-(1)+(0)-(-sqrt(3)/2-1/2*sqrt(3)/2)`


`=(sqrt(3)/4+sqrt(3)/2-1+sqrt(3)/2+sqrt(3)/4)`


`=(3/2sqrt(3)-1)`


`~~1.598`


Graph is attached. Integral is the sum of the region from (0 to pi/6) and (pi/6 to pi/2).



` `

`int_0^(pi/2)` (|sin(x)-cos(2x)|)dx


Since `sin(x)-cos(2x)<=0,[0,pi/6]`


and `sin(x)-cos(2x)>=0,[pi/6,pi/2]`


So, the integral can be split as,


`=int_0^(pi/6)(-(sin(x)-cos(2x)))dx+int_(pi/6)^(pi/2)(sin(x)-cos(2x))dx`


`=int_0^(pi/6)(cos(2x)-sin(x))dx+int_(pi/6)^(pi/2)(sin(x)-cos(2x))dx`


`=[1/2sin(2x)+cos(x)]_0^(pi/6)+[-cos(x)-1/2sin(2x)]_(pi/6)^(pi/2)`


`=(1/2sin(pi/3)+cos(pi/6)-(1/2sin(0)+cos(0))+(-cos(pi/2)-1/2sin(pi))-(-cos(pi/6)-1/2sin(pi/3))`


`=(1/2*sqrt(3)/2+sqrt(3)/2)-(1)+(0)-(-sqrt(3)/2-1/2*sqrt(3)/2)`


`=(sqrt(3)/4+sqrt(3)/2-1+sqrt(3)/2+sqrt(3)/4)`


`=(3/2sqrt(3)-1)`


`~~1.598`


Graph is attached. Integral is the sum of the region from (0 to pi/6) and (pi/6 to pi/2).



` `

No comments:

Post a Comment

Is there any personification in &quot;The Tell-Tale Heart&quot;?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...