`x=y^4,y=sqrt(2-x), y=0`
Refer the attached image. `x=y^4` is plotted in red color and `y=sqrt(2-x)` is plotted in blue color.The curves intersect at x=y=1.
`y=sqrt(2-x)rArry^2=2-x=>x=2-y^2`
Area of the region enclosed by the given curves A=`int_0^1((2-y^2)-y^4)dy`
`A=int_0^1(2-y^2-y^4)dy`
`A=[2y-y^3/3-y^5/5]_0^1`
`A=(2*1-1^3/3-1^5/5)`
`A=(2-1/3-1/5)`
`A=(30-5-3)/15`
`A=22/15`
`x=y^4,y=sqrt(2-x), y=0`
Refer the attached image. `x=y^4` is plotted in red color and `y=sqrt(2-x)` is plotted in blue color.The curves intersect at x=y=1.
`y=sqrt(2-x)rArry^2=2-x=>x=2-y^2`
Area of the region enclosed by the given curves A=`int_0^1((2-y^2)-y^4)dy`
`A=int_0^1(2-y^2-y^4)dy`
`A=[2y-y^3/3-y^5/5]_0^1`
`A=(2*1-1^3/3-1^5/5)`
`A=(2-1/3-1/5)`
`A=(30-5-3)/15`
`A=22/15`
No comments:
Post a Comment