You need to use the following substitution ` tan theta= t` , such that:
`tan theta= t=>(sec^2 theta)d theta= dt `
`int (sec^2 theta)tan^3 theta d theta = int t^3 dt`
`int t^3 dt = (t^4)/4 + c`
Replacing back `tan theta` for t yields:
`int (sec^2 theta)tan^3 theta d theta =(tan^4 theta)/4 + c`
Hence, evaluating the indefinite integral, yields `int (sec^2 theta)tan^3 theta d theta =(tan^4 theta)/4 + c`
You need to use the following substitution ` tan theta= t` , such that:
`tan theta= t=>(sec^2 theta)d theta= dt `
`int (sec^2 theta)tan^3 theta d theta = int t^3 dt`
`int t^3 dt = (t^4)/4 + c`
Replacing back `tan theta` for t yields:
`int (sec^2 theta)tan^3 theta d theta =(tan^4 theta)/4 + c`
Hence, evaluating the indefinite integral, yields `int (sec^2 theta)tan^3 theta d theta =(tan^4 theta)/4 + c`
No comments:
Post a Comment