Friday, 7 October 2016

`int sec^2(theta) tan^3(theta) d theta` Evaluate the indefinite integral.

You need to use the following substitution ` tan theta= t` , such that:


`tan theta= t=>(sec^2 theta)d theta= dt `


`int (sec^2 theta)tan^3 theta d theta = int t^3 dt`


`int t^3 dt = (t^4)/4 + c`


Replacing back `tan theta` for t yields:


`int (sec^2 theta)tan^3 theta d theta =(tan^4 theta)/4 + c`


Hence, evaluating the indefinite integral, yields `int (sec^2 theta)tan^3 theta d theta =(tan^4 theta)/4 + c`

You need to use the following substitution ` tan theta= t` , such that:


`tan theta= t=>(sec^2 theta)d theta= dt `


`int (sec^2 theta)tan^3 theta d theta = int t^3 dt`


`int t^3 dt = (t^4)/4 + c`


Replacing back `tan theta` for t yields:


`int (sec^2 theta)tan^3 theta d theta =(tan^4 theta)/4 + c`


Hence, evaluating the indefinite integral, yields `int (sec^2 theta)tan^3 theta d theta =(tan^4 theta)/4 + c`

No comments:

Post a Comment

Is there any personification in "The Tell-Tale Heart"?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...