You need to use the following substitution 5 - 3x = t, such that:
`5 - 3x = t => -3dx = dt => dx = -(dt)/3`
`int (dx)/(5 -3x) = -(1/3) int (dt)/t`
`-(1/3) int (dt)/t = -(1/3) ln |t| + c`
Replacing back 5 - 3x for t yields:
`int (dx)/(5 -3x) = -(1/3) ln |5 - 3x| + c`
Hence, evaluating the indefinite integral, yields`int (dx)/(5 -3x) = -(1/3) ln |5...
You need to use the following substitution 5 - 3x = t, such that:
`5 - 3x = t => -3dx = dt => dx = -(dt)/3`
`int (dx)/(5 -3x) = -(1/3) int (dt)/t`
`-(1/3) int (dt)/t = -(1/3) ln |t| + c`
Replacing back 5 - 3x for t yields:
`int (dx)/(5 -3x) = -(1/3) ln |5 - 3x| + c`
Hence, evaluating the indefinite integral, yields `int (dx)/(5 -3x) = -(1/3) ln |5 - 3x| + c.`
No comments:
Post a Comment