`tan(2x)-2cos(x)=0, 0<=x<=2pi`
`tan(2x)-2cos(x)=0`
`sin(2x)/cos(2x)-2cos(x)=0`
`sin(2x)-2cos(2x)cos(x)=0`
`2sin(x)cos(x)-2cos(2x)cos(x)=0`
`2cos(x)(sin(x)-cos(2x))=0`
using the identity`cos(2x)=1-2sin^2(x),`
`2cos(x)(sin(x)-(1-2sin^2(x)))=0`
`2cos(x)(sin(x)-1+2sin^2(x))=0`
solving each part separately,
`cos(x)=0`
General solutions are,
`x=pi/2+2pin , x=(3pi)/2+2pin`
Solutions for the range `0<=x<=2pi` are,
`x=pi/2 , x=(3pi)/2`
`2sin^2(x)+sin(x)-1=0`
Let sin(x)=y
`2y^2+y-1=0`
solve using the quadratic formula,
`y=(-1+-sqrt(1^2-4*2*(-1)))/(2*2)`
`y=-1,1/2`
substitute back y=sin(x)
`sin(x)=-1 , sin(x)=1/2`
For sin(x)=-1
General solutions are,
`x=(3pi)/2+2pin`
Solutions for the range `0<=x<=2pi` are,
`x=(3pi)/2`
For sin(x)=1/2
General solutions are,
`x=pi/6+2pin , x=(5pi)/6+2pin`
solutions for the range `0<=x<=2pi`...
`tan(2x)-2cos(x)=0, 0<=x<=2pi`
`tan(2x)-2cos(x)=0`
`sin(2x)/cos(2x)-2cos(x)=0`
`sin(2x)-2cos(2x)cos(x)=0`
`2sin(x)cos(x)-2cos(2x)cos(x)=0`
`2cos(x)(sin(x)-cos(2x))=0`
using the identity`cos(2x)=1-2sin^2(x),`
`2cos(x)(sin(x)-(1-2sin^2(x)))=0`
`2cos(x)(sin(x)-1+2sin^2(x))=0`
solving each part separately,
`cos(x)=0`
General solutions are,
`x=pi/2+2pin , x=(3pi)/2+2pin`
Solutions for the range `0<=x<=2pi` are,
`x=pi/2 , x=(3pi)/2`
`2sin^2(x)+sin(x)-1=0`
Let sin(x)=y
`2y^2+y-1=0`
solve using the quadratic formula,
`y=(-1+-sqrt(1^2-4*2*(-1)))/(2*2)`
`y=-1,1/2`
substitute back y=sin(x)
`sin(x)=-1 , sin(x)=1/2`
For sin(x)=-1
General solutions are,
`x=(3pi)/2+2pin`
Solutions for the range `0<=x<=2pi` are,
`x=(3pi)/2`
For sin(x)=1/2
General solutions are,
`x=pi/6+2pin , x=(5pi)/6+2pin`
solutions for the range `0<=x<=2pi` are,
`x=pi/6 , (5pi)/6`
Combine all the solutions,
`x=pi/2 , (3pi)/2 , pi/6 , (5pi)/6`
No comments:
Post a Comment