Friday, 3 November 2017

`(2 + 2i)^6` Use DeMoivre's Theorem to find the indicated power of the complex number. Write the result in standard form.

`z=(2+2i)^6`


`r=sqrt[(2)^2+(2)^2]=sqrt8=2sqrt2`


`theta=arctan(2/2)=arctan(1)=pi/4`


DeMoivre's Theorem


`z^n=[r(costheta+isintheta)]^n=r^n(cosntheta+isinntheta)`


`z^6=[2sqrt2(cos(pi/4)+isin(pi/4)]^6=(2sqrt2)^6[cos6(pi/4)+isin6(pi/4)]`


`z^6=512[cos((3pi)/2)+isin((3pi)/2)]`


`z^6=512[0+(-1)i]`


`z^6=-512i`



`z=(2+2i)^6`


`r=sqrt[(2)^2+(2)^2]=sqrt8=2sqrt2`


`theta=arctan(2/2)=arctan(1)=pi/4`


DeMoivre's Theorem


`z^n=[r(costheta+isintheta)]^n=r^n(cosntheta+isinntheta)`


`z^6=[2sqrt2(cos(pi/4)+isin(pi/4)]^6=(2sqrt2)^6[cos6(pi/4)+isin6(pi/4)]`


`z^6=512[cos((3pi)/2)+isin((3pi)/2)]`


`z^6=512[0+(-1)i]`


`z^6=-512i`



No comments:

Post a Comment

Is there any personification in "The Tell-Tale Heart"?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...