`sin(u-v)=sin(u)cos(v)-cos(u)sin(v)`
`sin(300-45)=sin(300)cos(45)-cos(300)sin(45)`
`sin(300-45)=(-sqrt3/2)(sqrt2/2)-(1/2)(sqrt2/2)=-sqrt2/4(sqrt3+1)`
`cos(u-v)=cos(u)cos(v)+sin(u)sin(v)`
`cos(300-45)=cos(300)cos(45)+sin(300)sin(45)`
`cos(300-45)=(1/2)(sqrt2/2)+(-sqrt3/2)(sqrt2/2)=sqrt2/4(1-sqrt3)`
`tan(u-v)=(tan(u)-tan(v))/(1-tan(u)tan(v))`
`tan(300-45)=(tan(300)-tan(45))/(1-tan(300)tan(45))=(-sqrt3-1)/(1-sqrt3(1))=(-sqrt3-1)/(1-sqrt3)`
The rationalized answer is `sqrt3+2.`
`sin(u-v)=sin(u)cos(v)-cos(u)sin(v)`
`sin(300-45)=sin(300)cos(45)-cos(300)sin(45)`
`sin(300-45)=(-sqrt3/2)(sqrt2/2)-(1/2)(sqrt2/2)=-sqrt2/4(sqrt3+1)`
`cos(u-v)=cos(u)cos(v)+sin(u)sin(v)`
`cos(300-45)=cos(300)cos(45)+sin(300)sin(45)`
`cos(300-45)=(1/2)(sqrt2/2)+(-sqrt3/2)(sqrt2/2)=sqrt2/4(1-sqrt3)`
`tan(u-v)=(tan(u)-tan(v))/(1-tan(u)tan(v))`
`tan(300-45)=(tan(300)-tan(45))/(1-tan(300)tan(45))=(-sqrt3-1)/(1-sqrt3(1))=(-sqrt3-1)/(1-sqrt3)`
The rationalized answer is `sqrt3+2.`
No comments:
Post a Comment