Friday, 2 January 2015

`int 5^t sin(5^t) dt` Evaluate the indefinite integral.

You need to use the following substitution  `5^t=u` , such that:


`5^t=u=>5^t*ln 5 dt = du => 5^t*dt= (du)/(ln 5)`


`int5^t*sin(5^t) dt = (1/(ln 5))*int sin u du`


`(1/(ln 5))*int sin u du = -(1/(ln 5))*cos u + c`


Replacing back  `5^t ` for u yields:


`int5^t*sin(5^t) dt = (-cos(5^t))/(ln 5)+c`


Hence, evaluating the indefinite integral, yields `int5^t*sin(5^t) dt = (-cos(5^t))/(ln 5)+c.`

You need to use the following substitution  `5^t=u` , such that:


`5^t=u=>5^t*ln 5 dt = du => 5^t*dt= (du)/(ln 5)`


`int5^t*sin(5^t) dt = (1/(ln 5))*int sin u du`


`(1/(ln 5))*int sin u du = -(1/(ln 5))*cos u + c`


Replacing back  `5^t ` for u yields:


`int5^t*sin(5^t) dt = (-cos(5^t))/(ln 5)+c`


Hence, evaluating the indefinite integral, yields `int5^t*sin(5^t) dt = (-cos(5^t))/(ln 5)+c.`

No comments:

Post a Comment

Is there any personification in "The Tell-Tale Heart"?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...