Saturday, 10 January 2015

`int cos(pi/x)/(x^2) dx` Evaluate the indefinite integral.

Given `intcos(pi/x)/x^2dx`


integrate using the Substitution Rule.


Let `u=pi/x`


or `u=pix^-1`


`(du)/dx=-pix^-2`


`(du)/dx=-pi/x^2`


`dx=x^2/-pi*du`



`=intcos(u)/x^2*(x^2/-pi)du`


`=1/-piintcos(u)du`


`=1/-pisin(u)+C`


`=1/-pisin(pi/x)+C`


Given `intcos(pi/x)/x^2dx`


integrate using the Substitution Rule.


Let `u=pi/x`


or `u=pix^-1`


`(du)/dx=-pix^-2`


`(du)/dx=-pi/x^2`


`dx=x^2/-pi*du`



`=intcos(u)/x^2*(x^2/-pi)du`


`=1/-piintcos(u)du`


`=1/-pisin(u)+C`


`=1/-pisin(pi/x)+C`


No comments:

Post a Comment

Is there any personification in "The Tell-Tale Heart"?

Personification is a literary device in which the author attributes human characteristics and features to inanimate objects, ideas, or anima...