Given `intcos(pi/x)/x^2dx`
integrate using the Substitution Rule.
Let `u=pi/x`
or `u=pix^-1`
`(du)/dx=-pix^-2`
`(du)/dx=-pi/x^2`
`dx=x^2/-pi*du`
`=intcos(u)/x^2*(x^2/-pi)du`
`=1/-piintcos(u)du`
`=1/-pisin(u)+C`
`=1/-pisin(pi/x)+C`
Given `intcos(pi/x)/x^2dx`
integrate using the Substitution Rule.
Let `u=pi/x`
or `u=pix^-1`
`(du)/dx=-pix^-2`
`(du)/dx=-pi/x^2`
`dx=x^2/-pi*du`
`=intcos(u)/x^2*(x^2/-pi)du`
`=1/-piintcos(u)du`
`=1/-pisin(u)+C`
`=1/-pisin(pi/x)+C`
No comments:
Post a Comment