It is known that
`cos^2(y)=(1/2)(1+cos(2y))` and
`tan^2(y)=(1-cos(2y))/(1+cos(2y)).`
Repeating the first formula we obtain
`cos^4(y)=(1/4)(1+2cos(2y)+cos^2(2y))=`
`=(1/4)(1+2cos(2y)+(1/2)(1+cos(4y))=`
`=(1/8)(3+4cos(2y)+cos(4y)).`
Finally, for `y=2x`
`tan^2(2x)*cos^4(2x)=(1-cos(4x))/(1+cos(4x))*(1/8)(3+4cos(4x)+cos(8x)).`
It is known that
`cos^2(y)=(1/2)(1+cos(2y))` and
`tan^2(y)=(1-cos(2y))/(1+cos(2y)).`
Repeating the first formula we obtain
`cos^4(y)=(1/4)(1+2cos(2y)+cos^2(2y))=`
`=(1/4)(1+2cos(2y)+(1/2)(1+cos(4y))=`
`=(1/8)(3+4cos(2y)+cos(4y)).`
Finally, for `y=2x`
`tan^2(2x)*cos^4(2x)=(1-cos(4x))/(1+cos(4x))*(1/8)(3+4cos(4x)+cos(8x)).`
No comments:
Post a Comment