Use the formula of difference of sinuses
`sin(a)-sin(b)=2sin((a-b)/2)cos((a+b)/2)`
and obtain
`2sin((2pi)/3)cos(x-pi/2)=sqrt(3)/2,`
or `2*sqrt(3)/2*cos(x-pi/2)=sqrt(3)/2,`
or `cos(x-pi/2)=1/2.`
The general solution is `x-pi/2=+-pi/3+2kpi,` or `x=pi/2+-pi/3+2kpi.`
The solutions on the interval `[0, 2pi)` are `x=(5pi)/6` and `x=pi/6.`
Use the formula of difference of sinuses
`sin(a)-sin(b)=2sin((a-b)/2)cos((a+b)/2)`
and obtain
`2sin((2pi)/3)cos(x-pi/2)=sqrt(3)/2,`
or `2*sqrt(3)/2*cos(x-pi/2)=sqrt(3)/2,`
or `cos(x-pi/2)=1/2.`
The general solution is `x-pi/2=+-pi/3+2kpi,` or `x=pi/2+-pi/3+2kpi.`
The solutions on the interval `[0, 2pi)` are `x=(5pi)/6` and `x=pi/6.`
No comments:
Post a Comment